作者 by aigle / 2024-01-05 / 暂无评论
Apache DolphinScheduler 是一个分布式易扩展的可视化DAG工作流任务调度开源系统。适用于企业级场景,提供了一个可视化操作任务、工作流和全生命周期数据处理过程的解决方案。
Apache DolphinScheduler 旨在解决复杂的大数据任务依赖关系,并为应用程序提供数据和各种 OPS 编排中的关系。 解决数据研发ETL依赖错综复杂,无法监控任务健康状态的问题。 DolphinScheduler 以 DAG(Directed Acyclic Graph,DAG)流式方式组装任务,可以及时监控任务的执行状态,支持重试、指定节点恢复失败、暂停、恢复、终止任务等操作。

简单易用
丰富的使用场景
High Reliability
High Scalability
在对 Apache DolphinScheduler 了解之前,我们先来认识一下调度系统常用的名词
DAG: 全称 Directed Acyclic Graph,简称 DAG。工作流中的 Task 任务以有向无环图的形式组装起来,从入度为零的节点进行拓扑遍历,直到无后继节点为止。举例如下图:

流程定义:通过拖拽任务节点并建立任务节点的关联所形成的可视化DAG
流程实例:流程实例是流程定义的实例化,可以通过手动启动或定时调度生成。每运行一次流程定义,产生一个流程实例。
任务实例:任务实例是流程定义中任务节点的实例化,标识着某个具体的任务。
任务类型:目前支持有 SHELL、SQL、SUB_PROCESS(子流程)、PROCEDURE、MR、SPARK、PYTHON、DEPENDENT(依赖),同时计划支持动态插件扩展,注意:其中 SUB_PROCESS类型的任务需要关联另外一个流程定义,被关联的流程定义是可以单独启动执行的
调度方式:系统支持基于 cron 表达式的定时调度和手动调度。命令类型支持:启动工作流、从当前节点开始执行、恢复被容错的工作流、恢复暂停流程、从失败节点开始执行、补数、定时、重跑、暂停、停止、恢复等待线程。 其中 恢复被容错的工作流 和 恢复等待线程 两种命令类型是由调度内部控制使用,外部无法调用
定时调度:系统采用 quartz 分布式调度器,并同时支持cron表达式可视化的生成
依赖:系统不单单支持 DAG 简单的前驱和后继节点之间的依赖,同时还提供任务依赖节点,支持流程间的自定义任务依赖
优先级 :支持流程实例和任务实例的优先级,如果流程实例和任务实例的优先级不设置,则默认是先进先出
邮件告警:支持 SQL任务 查询结果邮件发送,流程实例运行结果邮件告警及容错告警通知
失败策略:对于并行运行的任务,如果有任务失败,提供两种失败策略处理方式,继续是指不管并行运行任务的状态,直到流程失败结束。结束是指一旦发现失败任务,则同时Kill掉正在运行的并行任务,流程失败结束
补数:补历史数据,支持区间并行和串行两种补数方式,其日期选择方式包括日期范围和日期枚举两种

MasterServer采用分布式无中心设计理念,MasterServer主要负责 DAG 任务切分、任务提交监控,并同时监听其它MasterServer和WorkerServer的健康状态。 MasterServer服务启动时向Zookeeper注册临时节点,通过监听Zookeeper临时节点变化来进行容错处理。 MasterServer基于netty提供监听服务。
该服务内主要包含:
t_ds_command表,根据不同的命令类型进行不同的业务操作;WorkerServer也采用分布式无中心设计理念,WorkerServer主要负责任务的执行和提供日志服务。 WorkerServer服务启动时向Zookeeper注册临时节点,并维持心跳。 Server基于netty提供监听服务。
##### 该服务包含:
ZooKeeper服务,系统中的MasterServer和WorkerServer节点都通过ZooKeeper来进行集群管理和容错。另外系统还基于ZooKeeper进行事件监听和分布式锁。 我们也曾经基于Redis实现过队列,不过我们希望DolphinScheduler依赖到的组件尽量地少,所以最后还是去掉了Redis实现。
提供告警服务,通过告警插件的方式实现丰富的告警手段。
API接口层,主要负责处理前端UI层的请求。该服务统一提供RESTful api向外部提供请求服务。 接口包括工作流的创建、定义、查询、修改、发布、下线、手工启动、停止、暂停、恢复、从该节点开始执行等等。
系统的前端页面,提供系统的各种可视化操作界面。

中心化的设计理念比较简单,分布式集群中的节点按照角色分工,大体上分为两种角色:

中心化思想设计存在的问题:

容错分为服务宕机容错和任务重试,服务宕机容错又分为Master容错和Worker容错两种情况
服务容错设计依赖于ZooKeeper的Watcher机制,实现原理如图:

其中Master监控其他Master和Worker的目录,如果监听到remove事件,则会根据具体的业务逻辑进行流程实例容错或者任务实例容错。
Master容错流程:
Worker容错流程:
handleDeadServer时会加锁;注意:
由于” 网络抖动”可能会使得节点短时间内失去和ZooKeeper的心跳,从而发生节点的remove事件。对于这种情况,我们使用最简单的方式,那就是节点一旦和ZooKeeper发生超时连接,则直接将Master或Worker服务停掉。
这里首先要区分任务失败重试、流程失败恢复、流程失败重跑的概念:
接下来说正题,我们将工作流中的任务节点分了两种类型。
每一个业务节点都可以配置失败重试的次数,当该任务节点失败,会自动重试,直到成功或者超过配置的重试次数。逻辑节点不支持失败重试。但是逻辑节点里的任务支持重试。
如果工作流中有任务失败达到最大重试次数,工作流就会失败停止,失败的工作流可以手动进行重跑操作或者流程恢复操作
在早期调度设计中,如果没有优先级设计,采用公平调度设计的话,会遇到先行提交的任务可能会和后继提交的任务同时完成的情况,而不能做到设置流程或者任务的优先级,因此我们对此进行了重新设计,目前我们设计如下:
按照不同流程实例优先级优先于同一个流程实例优先级优先于同一流程内任务优先级优先于同一流程内任务提交顺序依次从高到低进行任务处理。
具体实现是根据任务实例的json解析优先级,然后把流程实例优先级_流程实例id_任务优先级_任务id信息保存在ZooKeeper任务队列中,当从任务队列获取的时候,通过字符串比较即可得出最需要优先执行的任务



<conversionRule conversionWord="messsage" converterClass="org.apache.dolphinscheduler.service.log.SensitiveDataConverter"/>
<appender name="TASKLOGFILE" class="ch.qos.logback.classic.sift.SiftingAppender">
<filter class="org.apache.dolphinscheduler.service.log.TaskLogFilter"/>
<Discriminator class="org.apache.dolphinscheduler.service.log.TaskLogDiscriminator">
<key>taskAppId</key>
<logBase>${log.base}</logBase>
</Discriminator>
<sift>
<appender name="FILE-${taskAppId}" class="ch.qos.logback.core.FileAppender">
<file>${log.base}/${taskAppId}.log</file>
<encoder>
<pattern>
[%level] %date{yyyy-MM-dd HH:mm:ss.SSS Z} [%thread] %logger{96}:[%line] - %messsage%n
</pattern>
<charset>UTF-8</charset>
</encoder>
<append>true</append>
</appender>
</sift>
</appender>
评论已关闭